Metamath Proof Explorer


Theorem e23an

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e23an.1 φ , ψ χ
e23an.2 φ , ψ , θ τ
e23an.3 χ τ η
Assertion e23an φ , ψ , θ η

Proof

Step Hyp Ref Expression
1 e23an.1 φ , ψ χ
2 e23an.2 φ , ψ , θ τ
3 e23an.3 χ τ η
4 3 ex χ τ η
5 1 2 4 e23 φ , ψ , θ η