Metamath Proof Explorer


Theorem e2bi

Description: Biconditional form of e2 . syl6ib is e2bi without virtual deductions. (Contributed by Alan Sare, 10-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e2bi.1 φ , ψ χ
e2bi.2 χ θ
Assertion e2bi φ , ψ θ

Proof

Step Hyp Ref Expression
1 e2bi.1 φ , ψ χ
2 e2bi.2 χ θ
3 2 biimpi χ θ
4 1 3 e2 φ , ψ θ