Metamath Proof Explorer


Theorem e2ebindVD

Description: The following User's Proof is a Virtual Deduction proof (see wvd1 ) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. e2ebind is e2ebindVD without virtual deductions and was automatically derived from e2ebindVD .

1:: |- ( ph <-> ph )
2:1: |- ( A. y y = x -> ( ph <-> ph ) )
3:2: |- ( A. y y = x -> ( E. y ph <-> E. x ph ) )
4:: |- (. A. y y = x ->. A. y y = x ).
5:3,4: |- (. A. y y = x ->. ( E. y ph <-> E. x ph ) ).
6:: |- ( A. y y = x -> A. y A. y y = x )
7:5,6: |- (. A. y y = x ->. A. y ( E. y ph <-> E. x ph ) ).
8:7: |- (. A. y y = x ->. ( E. y E. y ph <-> E. y E. x ph ) ).
9:: |- ( E. y E. x ph <-> E. x E. y ph )
10:8,9: |- (. A. y y = x ->. ( E. y E. y ph <-> E. x E. y ph ) ).
11:: |- ( E. y ph -> A. y E. y ph )
12:11: |- ( E. y E. y ph <-> E. y ph )
13:10,12: |- (. A. y y = x ->. ( E. x E. y ph <-> E. y ph ) ).
14:13: |- ( A. y y = x -> ( E. x E. y ph <-> E. y ph ) )
15:: |- ( A. y y = x <-> A. x x = y )
qed:14,15: |- ( A. x x = y -> ( E. x E. y ph <-> E. y ph ) )
(Contributed by Alan Sare, 27-Nov-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion e2ebindVD x x = y x y φ y φ

Proof

Step Hyp Ref Expression
1 axc11n x x = y y y = x
2 hba1 y y = x y y y = x
3 idn1 y y = x y y = x
4 biid φ φ
5 4 a1i y y = x φ φ
6 5 drex1 y y = x y φ x φ
7 3 6 e1a y y = x y φ x φ
8 2 7 gen11nv y y = x y y φ x φ
9 exbi y y φ x φ y y φ y x φ
10 8 9 e1a y y = x y y φ y x φ
11 excom y x φ x y φ
12 bibi1 y y φ y x φ y y φ x y φ y x φ x y φ
13 12 biimprd y y φ y x φ y x φ x y φ y y φ x y φ
14 10 11 13 e10 y y = x y y φ x y φ
15 nfe1 y y φ
16 15 19.9 y y φ y φ
17 bitr3 y y φ x y φ y y φ y φ x y φ y φ
18 14 16 17 e10 y y = x x y φ y φ
19 18 in1 y y = x x y φ y φ
20 1 19 syl x x = y x y φ y φ