Metamath Proof Explorer


Theorem e3

Description: Meta-connective form of syl8 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e3.1 φ , ψ , χ θ
e3.2 θ τ
Assertion e3 φ , ψ , χ τ

Proof

Step Hyp Ref Expression
1 e3.1 φ , ψ , χ θ
2 e3.2 θ τ
3 2 a1i θ θ τ
4 1 1 3 e33 φ , ψ , χ τ