Metamath Proof Explorer


Theorem e30an

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e30an.1 φ , ψ , χ θ
e30an.2 τ
e30an.3 θ τ η
Assertion e30an φ , ψ , χ η

Proof

Step Hyp Ref Expression
1 e30an.1 φ , ψ , χ θ
2 e30an.2 τ
3 e30an.3 θ τ η
4 3 ex θ τ η
5 1 2 4 e30 φ , ψ , χ η