Metamath Proof Explorer


Theorem e31

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e31.1 φ , ψ , χ θ
e31.2 φ τ
e31.3 θ τ η
Assertion e31 φ , ψ , χ η

Proof

Step Hyp Ref Expression
1 e31.1 φ , ψ , χ θ
2 e31.2 φ τ
3 e31.3 θ τ η
4 2 vd13 φ , ψ , χ τ
5 1 4 3 e33 φ , ψ , χ η