Metamath Proof Explorer


Theorem e32

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e32.1 φ , ψ , χ θ
e32.2 φ , ψ τ
e32.3 θ τ η
Assertion e32 φ , ψ , χ η

Proof

Step Hyp Ref Expression
1 e32.1 φ , ψ , χ θ
2 e32.2 φ , ψ τ
3 e32.3 θ τ η
4 2 vd23 φ , ψ , χ τ
5 1 4 3 e33 φ , ψ , χ η