Metamath Proof Explorer


Theorem e323

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 17-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e323.1 φ , ψ , χ θ
e323.2 φ , ψ τ
e323.3 φ , ψ , χ η
e323.4 θ τ η ζ
Assertion e323 φ , ψ , χ ζ

Proof

Step Hyp Ref Expression
1 e323.1 φ , ψ , χ θ
2 e323.2 φ , ψ τ
3 e323.3 φ , ψ , χ η
4 e323.4 θ τ η ζ
5 1 dfvd3i φ ψ χ θ
6 2 dfvd2i φ ψ τ
7 3 dfvd3i φ ψ χ η
8 5 6 7 4 ee323 φ ψ χ ζ
9 8 dfvd3ir φ , ψ , χ ζ