Metamath Proof Explorer


Theorem e32an

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e32an.1 φ , ψ , χ θ
e32an.2 φ , ψ τ
e32an.3 θ τ η
Assertion e32an φ , ψ , χ η

Proof

Step Hyp Ref Expression
1 e32an.1 φ , ψ , χ θ
2 e32an.2 φ , ψ τ
3 e32an.3 θ τ η
4 3 ex θ τ η
5 1 2 4 e32 φ , ψ , χ η