Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Virtual Deduction Theorems
e333
Metamath Proof Explorer
Description: A virtual deduction elimination rule. (Contributed by Alan Sare , 12-Jun-2011) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
e333.1
⊢ φ , ψ , χ → θ
e333.2
⊢ φ , ψ , χ → τ
e333.3
⊢ φ , ψ , χ → η
e333.4
⊢ θ → τ → η → ζ
Assertion
e333
⊢ φ , ψ , χ → ζ
Proof
Step
Hyp
Ref
Expression
1
e333.1
⊢ φ , ψ , χ → θ
2
e333.2
⊢ φ , ψ , χ → τ
3
e333.3
⊢ φ , ψ , χ → η
4
e333.4
⊢ θ → τ → η → ζ
5
3
dfvd3i
⊢ φ → ψ → χ → η
6
5
3imp
⊢ φ ∧ ψ ∧ χ → η
7
1
dfvd3i
⊢ φ → ψ → χ → θ
8
7
3imp
⊢ φ ∧ ψ ∧ χ → θ
9
2
dfvd3i
⊢ φ → ψ → χ → τ
10
9
3imp
⊢ φ ∧ ψ ∧ χ → τ
11
8 10 4
syl2im
⊢ φ ∧ ψ ∧ χ → φ ∧ ψ ∧ χ → η → ζ
12
11
pm2.43i
⊢ φ ∧ ψ ∧ χ → η → ζ
13
6 12
syl5com
⊢ φ ∧ ψ ∧ χ → φ ∧ ψ ∧ χ → ζ
14
13
pm2.43i
⊢ φ ∧ ψ ∧ χ → ζ
15
14
3exp
⊢ φ → ψ → χ → ζ
16
15
dfvd3ir
⊢ φ , ψ , χ → ζ