Metamath Proof Explorer


Theorem e333

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e333.1 φ , ψ , χ θ
e333.2 φ , ψ , χ τ
e333.3 φ , ψ , χ η
e333.4 θ τ η ζ
Assertion e333 φ , ψ , χ ζ

Proof

Step Hyp Ref Expression
1 e333.1 φ , ψ , χ θ
2 e333.2 φ , ψ , χ τ
3 e333.3 φ , ψ , χ η
4 e333.4 θ τ η ζ
5 3 dfvd3i φ ψ χ η
6 5 3imp φ ψ χ η
7 1 dfvd3i φ ψ χ θ
8 7 3imp φ ψ χ θ
9 2 dfvd3i φ ψ χ τ
10 9 3imp φ ψ χ τ
11 8 10 4 syl2im φ ψ χ φ ψ χ η ζ
12 11 pm2.43i φ ψ χ η ζ
13 6 12 syl5com φ ψ χ φ ψ χ ζ
14 13 pm2.43i φ ψ χ ζ
15 14 3exp φ ψ χ ζ
16 15 dfvd3ir φ , ψ , χ ζ