Metamath Proof Explorer


Theorem e33an

Description: Conjunction form of e33 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e33an.1 φ , ψ , χ θ
e33an.2 φ , ψ , χ τ
e33an.3 θ τ η
Assertion e33an φ , ψ , χ η

Proof

Step Hyp Ref Expression
1 e33an.1 φ , ψ , χ θ
2 e33an.2 φ , ψ , χ τ
3 e33an.3 θ τ η
4 3 ex θ τ η
5 1 2 4 e33 φ , ψ , χ η