Metamath Proof Explorer


Theorem e3bi

Description: Biconditional form of e3 . syl8ib is e3bi without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e3bi.1 φ , ψ , χ θ
e3bi.2 θ τ
Assertion e3bi φ , ψ , χ τ

Proof

Step Hyp Ref Expression
1 e3bi.1 φ , ψ , χ θ
2 e3bi.2 θ τ
3 2 biimpi θ τ
4 1 3 e3 φ , ψ , χ τ