Metamath Proof Explorer
Description: Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994)
(Proof shortened by Wolf Lammen, 19-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
ecase2d.1 |
|
|
|
ecase2d.2 |
|
|
|
ecase2d.3 |
|
|
|
ecase2d.4 |
|
|
Assertion |
ecase2d |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ecase2d.1 |
|
2 |
|
ecase2d.2 |
|
3 |
|
ecase2d.3 |
|
4 |
|
ecase2d.4 |
|
5 |
1 2
|
mpnanrd |
|
6 |
1 3
|
mpnanrd |
|
7 |
4
|
ord |
|
8 |
5 6 7
|
mtord |
|
9 |
8
|
notnotrd |
|