Metamath Proof Explorer


Theorem ecase2d

Description: Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 19-Sep-2024)

Ref Expression
Hypotheses ecase2d.1 φ ψ
ecase2d.2 φ ¬ ψ χ
ecase2d.3 φ ¬ ψ θ
ecase2d.4 φ τ χ θ
Assertion ecase2d φ τ

Proof

Step Hyp Ref Expression
1 ecase2d.1 φ ψ
2 ecase2d.2 φ ¬ ψ χ
3 ecase2d.3 φ ¬ ψ θ
4 ecase2d.4 φ τ χ θ
5 1 2 mpnanrd φ ¬ χ
6 1 3 mpnanrd φ ¬ θ
7 4 ord φ ¬ τ χ θ
8 5 6 7 mtord φ ¬ ¬ τ
9 8 notnotrd φ τ