Metamath Proof Explorer


Theorem ecase3ad

Description: Deduction for elimination by cases. (Contributed by NM, 24-May-2013) (Proof shortened by Wolf Lammen, 20-Sep-2024)

Ref Expression
Hypotheses ecase3ad.1 φ ψ θ
ecase3ad.2 φ χ θ
ecase3ad.3 φ ¬ ψ ¬ χ θ
Assertion ecase3ad φ θ

Proof

Step Hyp Ref Expression
1 ecase3ad.1 φ ψ θ
2 ecase3ad.2 φ χ θ
3 ecase3ad.3 φ ¬ ψ ¬ χ θ
4 1 imp φ ψ θ
5 2 imp φ χ θ
6 3 imp φ ¬ ψ ¬ χ θ
7 4 5 6 pm2.61ddan φ θ