Metamath Proof Explorer


Theorem ecase3d

Description: Deduction for elimination by cases. (Contributed by NM, 2-May-1996) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Hypotheses ecase3d.1 φ ψ θ
ecase3d.2 φ χ θ
ecase3d.3 φ ¬ ψ χ θ
Assertion ecase3d φ θ

Proof

Step Hyp Ref Expression
1 ecase3d.1 φ ψ θ
2 ecase3d.2 φ χ θ
3 ecase3d.3 φ ¬ ψ χ θ
4 1 2 jaod φ ψ χ θ
5 4 3 pm2.61d φ θ