Metamath Proof Explorer


Theorem ecased

Description: Deduction for elimination by cases. (Contributed by NM, 8-Oct-2012)

Ref Expression
Hypotheses ecased.1 φ ¬ ψ θ
ecased.2 φ ¬ χ θ
ecased.3 φ ψ χ θ
Assertion ecased φ θ

Proof

Step Hyp Ref Expression
1 ecased.1 φ ¬ ψ θ
2 ecased.2 φ ¬ χ θ
3 ecased.3 φ ψ χ θ
4 pm3.11 ¬ ¬ ψ ¬ χ ψ χ
5 4 3 syl5 φ ¬ ¬ ψ ¬ χ θ
6 1 2 5 ecase3d φ θ