Metamath Proof Explorer


Theorem ecelqs

Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 22-Nov-2025)

Ref Expression
Assertion ecelqs R A V B A B R A / R

Proof

Step Hyp Ref Expression
1 eqid B R = B R
2 eceq1 x = B x R = B R
3 2 rspceeqv B A B R = B R x A B R = x R
4 1 3 mpan2 B A x A B R = x R
5 4 adantl R A V B A x A B R = x R
6 elecex R A V B A B R V
7 6 imp R A V B A B R V
8 elqsg B R V B R A / R x A B R = x R
9 7 8 syl R A V B A B R A / R x A B R = x R
10 5 9 mpbird R A V B A B R A / R