Metamath Proof Explorer


Theorem ecelqsdm

Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995)

Ref Expression
Assertion ecelqsdm dom R = A B R A / R B A

Proof

Step Hyp Ref Expression
1 elqsn0 dom R = A B R A / R B R
2 ecdmn0 B dom R B R
3 1 2 sylibr dom R = A B R A / R B dom R
4 simpl dom R = A B R A / R dom R = A
5 3 4 eleqtrd dom R = A B R A / R B A