Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
ecelqsdm
Next ⟩
xpider
Metamath Proof Explorer
Ascii
Unicode
Theorem
ecelqsdm
Description:
Membership of an equivalence class in a quotient set.
(Contributed by
NM
, 30-Jul-1995)
Ref
Expression
Assertion
ecelqsdm
⊢
dom
⁡
R
=
A
∧
B
R
∈
A
/
R
→
B
∈
A
Proof
Step
Hyp
Ref
Expression
1
elqsn0
⊢
dom
⁡
R
=
A
∧
B
R
∈
A
/
R
→
B
R
≠
∅
2
ecdmn0
⊢
B
∈
dom
⁡
R
↔
B
R
≠
∅
3
1
2
sylibr
⊢
dom
⁡
R
=
A
∧
B
R
∈
A
/
R
→
B
∈
dom
⁡
R
4
simpl
⊢
dom
⁡
R
=
A
∧
B
R
∈
A
/
R
→
dom
⁡
R
=
A
5
3
4
eleqtrd
⊢
dom
⁡
R
=
A
∧
B
R
∈
A
/
R
→
B
∈
A