Metamath Proof Explorer


Theorem ecelqsg

Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion ecelqsg R V B A B R A / R

Proof

Step Hyp Ref Expression
1 eqid B R = B R
2 eceq1 x = B x R = B R
3 2 rspceeqv B A B R = B R x A B R = x R
4 1 3 mpan2 B A x A B R = x R
5 ecexg R V B R V
6 elqsg B R V B R A / R x A B R = x R
7 5 6 syl R V B R A / R x A B R = x R
8 7 biimpar R V x A B R = x R B R A / R
9 4 8 sylan2 R V B A B R A / R