Metamath Proof Explorer
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)
|
|
Ref |
Expression |
|
Hypothesis |
ecelqsi.1 |
|
|
Assertion |
ecelqsi |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ecelqsi.1 |
|
2 |
|
ecelqsg |
|
3 |
1 2
|
mpan |
|