Metamath Proof Explorer


Theorem ecelqsi

Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypothesis ecelqsi.1 R V
Assertion ecelqsi B A B R A / R

Proof

Step Hyp Ref Expression
1 ecelqsi.1 R V
2 ecelqsg R V B A B R A / R
3 1 2 mpan B A B R A / R