Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
eceq1
Next ⟩
eceq1d
Metamath Proof Explorer
Ascii
Unicode
Theorem
eceq1
Description:
Equality theorem for equivalence class.
(Contributed by
NM
, 23-Jul-1995)
Ref
Expression
Assertion
eceq1
⊢
A
=
B
→
A
C
=
B
C
Proof
Step
Hyp
Ref
Expression
1
sneq
⊢
A
=
B
→
A
=
B
2
1
imaeq2d
⊢
A
=
B
→
C
A
=
C
B
3
df-ec
⊢
A
C
=
C
A
4
df-ec
⊢
B
C
=
C
B
5
2
3
4
3eqtr4g
⊢
A
=
B
→
A
C
=
B
C