Step |
Hyp |
Ref |
Expression |
1 |
|
eceqoveq.5 |
|
2 |
|
eceqoveq.7 |
|
3 |
|
eceqoveq.8 |
|
4 |
|
eceqoveq.9 |
|
5 |
|
eceqoveq.10 |
|
6 |
|
opelxpi |
|
7 |
6
|
ad2antrr |
|
8 |
1
|
a1i |
|
9 |
|
simpr |
|
10 |
8 9
|
ereldm |
|
11 |
7 10
|
mpbid |
|
12 |
|
opelxp2 |
|
13 |
11 12
|
syl |
|
14 |
13
|
ex |
|
15 |
4
|
caovcl |
|
16 |
|
eleq1 |
|
17 |
15 16
|
syl5ibr |
|
18 |
2 3
|
ndmovrcl |
|
19 |
18
|
simprd |
|
20 |
17 19
|
syl6com |
|
21 |
20
|
adantll |
|
22 |
1
|
a1i |
|
23 |
6
|
adantr |
|
24 |
22 23
|
erth |
|
25 |
24 5
|
bitr3d |
|
26 |
25
|
expr |
|
27 |
14 21 26
|
pm5.21ndd |
|
28 |
27
|
an32s |
|
29 |
|
eqcom |
|
30 |
|
erdm |
|
31 |
1 30
|
ax-mp |
|
32 |
31
|
eleq2i |
|
33 |
|
ecdmn0 |
|
34 |
|
opelxp |
|
35 |
32 33 34
|
3bitr3i |
|
36 |
35
|
simplbi2 |
|
37 |
36
|
ad2antlr |
|
38 |
37
|
necon2bd |
|
39 |
|
simpr |
|
40 |
2
|
ndmov |
|
41 |
39 40
|
nsyl5 |
|
42 |
38 41
|
syl6 |
|
43 |
|
eleq1 |
|
44 |
3 43
|
mtbiri |
|
45 |
35
|
simprbi |
|
46 |
4
|
caovcl |
|
47 |
46
|
ex |
|
48 |
47
|
ad2antrr |
|
49 |
45 48
|
syl5 |
|
50 |
49
|
necon1bd |
|
51 |
44 50
|
syl5 |
|
52 |
42 51
|
impbid |
|
53 |
29 52
|
syl5bb |
|
54 |
31
|
eleq2i |
|
55 |
|
ecdmn0 |
|
56 |
|
opelxp |
|
57 |
54 55 56
|
3bitr3i |
|
58 |
57
|
simprbi |
|
59 |
58
|
necon1bi |
|
60 |
59
|
adantl |
|
61 |
60
|
eqeq1d |
|
62 |
|
simpl |
|
63 |
2
|
ndmov |
|
64 |
62 63
|
nsyl5 |
|
65 |
64
|
adantl |
|
66 |
65
|
eqeq2d |
|
67 |
53 61 66
|
3bitr4d |
|
68 |
28 67
|
pm2.61dan |
|