Metamath Proof Explorer


Theorem eceqoveq

Description: Equality of equivalence relation in terms of an operation. (Contributed by NM, 15-Feb-1996) (Proof shortened by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses eceqoveq.5 ˙ Er S × S
eceqoveq.7 dom + ˙ = S × S
eceqoveq.8 ¬ S
eceqoveq.9 x S y S x + ˙ y S
eceqoveq.10 A S B S C S D S A B ˙ C D A + ˙ D = B + ˙ C
Assertion eceqoveq A S C S A B ˙ = C D ˙ A + ˙ D = B + ˙ C

Proof

Step Hyp Ref Expression
1 eceqoveq.5 ˙ Er S × S
2 eceqoveq.7 dom + ˙ = S × S
3 eceqoveq.8 ¬ S
4 eceqoveq.9 x S y S x + ˙ y S
5 eceqoveq.10 A S B S C S D S A B ˙ C D A + ˙ D = B + ˙ C
6 opelxpi A S B S A B S × S
7 6 ad2antrr A S B S C S A B ˙ = C D ˙ A B S × S
8 1 a1i A S B S C S A B ˙ = C D ˙ ˙ Er S × S
9 simpr A S B S C S A B ˙ = C D ˙ A B ˙ = C D ˙
10 8 9 ereldm A S B S C S A B ˙ = C D ˙ A B S × S C D S × S
11 7 10 mpbid A S B S C S A B ˙ = C D ˙ C D S × S
12 opelxp2 C D S × S D S
13 11 12 syl A S B S C S A B ˙ = C D ˙ D S
14 13 ex A S B S C S A B ˙ = C D ˙ D S
15 4 caovcl B S C S B + ˙ C S
16 eleq1 A + ˙ D = B + ˙ C A + ˙ D S B + ˙ C S
17 15 16 syl5ibr A + ˙ D = B + ˙ C B S C S A + ˙ D S
18 2 3 ndmovrcl A + ˙ D S A S D S
19 18 simprd A + ˙ D S D S
20 17 19 syl6com B S C S A + ˙ D = B + ˙ C D S
21 20 adantll A S B S C S A + ˙ D = B + ˙ C D S
22 1 a1i A S B S C S D S ˙ Er S × S
23 6 adantr A S B S C S D S A B S × S
24 22 23 erth A S B S C S D S A B ˙ C D A B ˙ = C D ˙
25 24 5 bitr3d A S B S C S D S A B ˙ = C D ˙ A + ˙ D = B + ˙ C
26 25 expr A S B S C S D S A B ˙ = C D ˙ A + ˙ D = B + ˙ C
27 14 21 26 pm5.21ndd A S B S C S A B ˙ = C D ˙ A + ˙ D = B + ˙ C
28 27 an32s A S C S B S A B ˙ = C D ˙ A + ˙ D = B + ˙ C
29 eqcom = C D ˙ C D ˙ =
30 erdm ˙ Er S × S dom ˙ = S × S
31 1 30 ax-mp dom ˙ = S × S
32 31 eleq2i C D dom ˙ C D S × S
33 ecdmn0 C D dom ˙ C D ˙
34 opelxp C D S × S C S D S
35 32 33 34 3bitr3i C D ˙ C S D S
36 35 simplbi2 C S D S C D ˙
37 36 ad2antlr A S C S ¬ B S D S C D ˙
38 37 necon2bd A S C S ¬ B S C D ˙ = ¬ D S
39 simpr A S D S D S
40 2 ndmov ¬ A S D S A + ˙ D =
41 39 40 nsyl5 ¬ D S A + ˙ D =
42 38 41 syl6 A S C S ¬ B S C D ˙ = A + ˙ D =
43 eleq1 A + ˙ D = A + ˙ D S S
44 3 43 mtbiri A + ˙ D = ¬ A + ˙ D S
45 35 simprbi C D ˙ D S
46 4 caovcl A S D S A + ˙ D S
47 46 ex A S D S A + ˙ D S
48 47 ad2antrr A S C S ¬ B S D S A + ˙ D S
49 45 48 syl5 A S C S ¬ B S C D ˙ A + ˙ D S
50 49 necon1bd A S C S ¬ B S ¬ A + ˙ D S C D ˙ =
51 44 50 syl5 A S C S ¬ B S A + ˙ D = C D ˙ =
52 42 51 impbid A S C S ¬ B S C D ˙ = A + ˙ D =
53 29 52 syl5bb A S C S ¬ B S = C D ˙ A + ˙ D =
54 31 eleq2i A B dom ˙ A B S × S
55 ecdmn0 A B dom ˙ A B ˙
56 opelxp A B S × S A S B S
57 54 55 56 3bitr3i A B ˙ A S B S
58 57 simprbi A B ˙ B S
59 58 necon1bi ¬ B S A B ˙ =
60 59 adantl A S C S ¬ B S A B ˙ =
61 60 eqeq1d A S C S ¬ B S A B ˙ = C D ˙ = C D ˙
62 simpl B S C S B S
63 2 ndmov ¬ B S C S B + ˙ C =
64 62 63 nsyl5 ¬ B S B + ˙ C =
65 64 adantl A S C S ¬ B S B + ˙ C =
66 65 eqeq2d A S C S ¬ B S A + ˙ D = B + ˙ C A + ˙ D =
67 53 61 66 3bitr4d A S C S ¬ B S A B ˙ = C D ˙ A + ˙ D = B + ˙ C
68 28 67 pm2.61dan A S C S A B ˙ = C D ˙ A + ˙ D = B + ˙ C