Metamath Proof Explorer


Theorem ecexg

Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995)

Ref Expression
Assertion ecexg R B A R V

Proof

Step Hyp Ref Expression
1 df-ec A R = R A
2 imaexg R B R A V
3 1 2 eqeltrid R B A R V