Metamath Proof Explorer


Theorem ecexr

Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion ecexr ABRBV

Proof

Step Hyp Ref Expression
1 n0i ARB¬RB=
2 snprc ¬BVB=
3 imaeq2 B=RB=R
4 2 3 sylbi ¬BVRB=R
5 ima0 R=
6 4 5 eqtrdi ¬BVRB=
7 1 6 nsyl2 ARBBV
8 df-ec BR=RB
9 7 8 eleq2s ABRBV