Metamath Proof Explorer


Theorem ecexr

Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion ecexr A B R B V

Proof

Step Hyp Ref Expression
1 n0i A R B ¬ R B =
2 snprc ¬ B V B =
3 imaeq2 B = R B = R
4 2 3 sylbi ¬ B V R B = R
5 ima0 R =
6 4 5 eqtrdi ¬ B V R B =
7 1 6 nsyl2 A R B B V
8 df-ec B R = R B
9 7 8 eleq2s A B R B V