Metamath Proof Explorer


Theorem ecinxp

Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Assertion ecinxp R A A B A B R = B R A × A

Proof

Step Hyp Ref Expression
1 simpr R A A B A B A
2 1 snssd R A A B A B A
3 df-ss B A B A = B
4 2 3 sylib R A A B A B A = B
5 4 imaeq2d R A A B A R B A = R B
6 5 ineq1d R A A B A R B A A = R B A
7 imass2 B A R B R A
8 2 7 syl R A A B A R B R A
9 simpl R A A B A R A A
10 8 9 sstrd R A A B A R B A
11 df-ss R B A R B A = R B
12 10 11 sylib R A A B A R B A = R B
13 6 12 eqtr2d R A A B A R B = R B A A
14 imainrect R A × A B = R B A A
15 13 14 eqtr4di R A A B A R B = R A × A B
16 df-ec B R = R B
17 df-ec B R A × A = R A × A B
18 15 16 17 3eqtr4g R A A B A B R = B R A × A