Metamath Proof Explorer


Theorem ecopover

Description: Assuming that operation F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation .~ , specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996) (Revised by Mario Carneiro, 12-Aug-2015) (Proof shortened by AV, 1-May-2021)

Ref Expression
Hypotheses ecopopr.1 ˙ = x y | x S × S y S × S z w v u x = z w y = v u z + ˙ u = w + ˙ v
ecopopr.com x + ˙ y = y + ˙ x
ecopopr.cl x S y S x + ˙ y S
ecopopr.ass x + ˙ y + ˙ z = x + ˙ y + ˙ z
ecopopr.can x S y S x + ˙ y = x + ˙ z y = z
Assertion ecopover ˙ Er S × S

Proof

Step Hyp Ref Expression
1 ecopopr.1 ˙ = x y | x S × S y S × S z w v u x = z w y = v u z + ˙ u = w + ˙ v
2 ecopopr.com x + ˙ y = y + ˙ x
3 ecopopr.cl x S y S x + ˙ y S
4 ecopopr.ass x + ˙ y + ˙ z = x + ˙ y + ˙ z
5 ecopopr.can x S y S x + ˙ y = x + ˙ z y = z
6 1 relopabiv Rel ˙
7 1 2 ecopovsym f ˙ g g ˙ f
8 1 2 3 4 5 ecopovtrn f ˙ g g ˙ h f ˙ h
9 vex g V
10 vex h V
11 9 10 2 caovcom g + ˙ h = h + ˙ g
12 1 ecopoveq g S h S g S h S g h ˙ g h g + ˙ h = h + ˙ g
13 11 12 mpbiri g S h S g S h S g h ˙ g h
14 13 anidms g S h S g h ˙ g h
15 14 rgen2 g S h S g h ˙ g h
16 breq12 f = g h f = g h f ˙ f g h ˙ g h
17 16 anidms f = g h f ˙ f g h ˙ g h
18 17 ralxp f S × S f ˙ f g S h S g h ˙ g h
19 15 18 mpbir f S × S f ˙ f
20 19 rspec f S × S f ˙ f
21 opabssxp x y | x S × S y S × S z w v u x = z w y = v u z + ˙ u = w + ˙ v S × S × S × S
22 1 21 eqsstri ˙ S × S × S × S
23 22 ssbri f ˙ f f S × S × S × S f
24 brxp f S × S × S × S f f S × S f S × S
25 24 simplbi f S × S × S × S f f S × S
26 23 25 syl f ˙ f f S × S
27 20 26 impbii f S × S f ˙ f
28 6 7 8 27 iseri ˙ Er S × S