Metamath Proof Explorer


Theorem ecoptocl

Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995)

Ref Expression
Hypotheses ecoptocl.1 S = B × C / R
ecoptocl.2 x y R = A φ ψ
ecoptocl.3 x B y C φ
Assertion ecoptocl A S ψ

Proof

Step Hyp Ref Expression
1 ecoptocl.1 S = B × C / R
2 ecoptocl.2 x y R = A φ ψ
3 ecoptocl.3 x B y C φ
4 elqsi A B × C / R z B × C A = z R
5 eqid B × C = B × C
6 eceq1 x y = z x y R = z R
7 6 eqeq2d x y = z A = x y R A = z R
8 7 imbi1d x y = z A = x y R ψ A = z R ψ
9 2 eqcoms A = x y R φ ψ
10 3 9 syl5ibcom x B y C A = x y R ψ
11 5 8 10 optocl z B × C A = z R ψ
12 11 rexlimiv z B × C A = z R ψ
13 4 12 syl A B × C / R ψ
14 13 1 eleq2s A S ψ