Metamath Proof Explorer


Theorem ecqusaddcl

Description: Closure of the addition in a quotient group. (Contributed by AV, 24-Feb-2025)

Ref Expression
Hypotheses ecqusaddd.i φ I NrmSGrp R
ecqusaddd.b B = Base R
ecqusaddd.g ˙ = R ~ QG I
ecqusaddd.q Q = R / 𝑠 ˙
Assertion ecqusaddcl φ A B C B A ˙ + Q C ˙ Base Q

Proof

Step Hyp Ref Expression
1 ecqusaddd.i φ I NrmSGrp R
2 ecqusaddd.b B = Base R
3 ecqusaddd.g ˙ = R ~ QG I
4 ecqusaddd.q Q = R / 𝑠 ˙
5 1 2 3 4 ecqusaddd φ A B C B A + R C ˙ = A ˙ + Q C ˙
6 1 elfvexd φ R V
7 nsgsubg I NrmSGrp R I SubGrp R
8 subgrcl I SubGrp R R Grp
9 1 7 8 3syl φ R Grp
10 9 anim1i φ A B C B R Grp A B C B
11 3anass R Grp A B C B R Grp A B C B
12 10 11 sylibr φ A B C B R Grp A B C B
13 eqid + R = + R
14 2 13 grpcl R Grp A B C B A + R C B
15 12 14 syl φ A B C B A + R C B
16 eqid Base Q = Base Q
17 3 4 2 16 quseccl0 R V A + R C B A + R C ˙ Base Q
18 6 15 17 syl2an2r φ A B C B A + R C ˙ Base Q
19 5 18 eqeltrrd φ A B C B A ˙ + Q C ˙ Base Q