Metamath Proof Explorer


Theorem ecqusaddd

Description: Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025)

Ref Expression
Hypotheses ecqusaddd.i φ I NrmSGrp R
ecqusaddd.b B = Base R
ecqusaddd.g ˙ = R ~ QG I
ecqusaddd.q Q = R / 𝑠 ˙
Assertion ecqusaddd φ A B C B A + R C ˙ = A ˙ + Q C ˙

Proof

Step Hyp Ref Expression
1 ecqusaddd.i φ I NrmSGrp R
2 ecqusaddd.b B = Base R
3 ecqusaddd.g ˙ = R ~ QG I
4 ecqusaddd.q Q = R / 𝑠 ˙
5 1 anim1i φ A B C B I NrmSGrp R A B C B
6 3anass I NrmSGrp R A B C B I NrmSGrp R A B C B
7 5 6 sylibr φ A B C B I NrmSGrp R A B C B
8 3 oveq2i R / 𝑠 ˙ = R / 𝑠 R ~ QG I
9 4 8 eqtri Q = R / 𝑠 R ~ QG I
10 eqid + R = + R
11 eqid + Q = + Q
12 9 2 10 11 qusadd I NrmSGrp R A B C B A R ~ QG I + Q C R ~ QG I = A + R C R ~ QG I
13 7 12 syl φ A B C B A R ~ QG I + Q C R ~ QG I = A + R C R ~ QG I
14 3 eceq2i A ˙ = A R ~ QG I
15 3 eceq2i C ˙ = C R ~ QG I
16 14 15 oveq12i A ˙ + Q C ˙ = A R ~ QG I + Q C R ~ QG I
17 3 eceq2i A + R C ˙ = A + R C R ~ QG I
18 13 16 17 3eqtr4g φ A B C B A ˙ + Q C ˙ = A + R C ˙
19 18 eqcomd φ A B C B A + R C ˙ = A ˙ + Q C ˙