Metamath Proof Explorer


Theorem ecref

Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025)

Ref Expression
Assertion ecref R Er X A X A A R

Proof

Step Hyp Ref Expression
1 simpl R Er X A X R Er X
2 simpr R Er X A X A X
3 1 2 erref R Er X A X A R A
4 elecg A X A X A A R A R A
5 2 4 sylancom R Er X A X A A R A R A
6 3 5 mpbird R Er X A X A A R