Metamath Proof Explorer


Theorem ecss

Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis ecss.1 φ R Er X
Assertion ecss φ A R X

Proof

Step Hyp Ref Expression
1 ecss.1 φ R Er X
2 df-ec A R = R A
3 imassrn R A ran R
4 2 3 eqsstri A R ran R
5 errn R Er X ran R = X
6 1 5 syl φ ran R = X
7 4 6 sseqtrid φ A R X