Metamath Proof Explorer


Theorem ectocl

Description: Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses ectocl.1 S = B / R
ectocl.2 x R = A φ ψ
ectocl.3 x B φ
Assertion ectocl A S ψ

Proof

Step Hyp Ref Expression
1 ectocl.1 S = B / R
2 ectocl.2 x R = A φ ψ
3 ectocl.3 x B φ
4 tru
5 3 adantl x B φ
6 1 2 5 ectocld A S ψ
7 4 6 mpan A S ψ