Metamath Proof Explorer


Theorem ectocld

Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses ectocl.1 S = B / R
ectocl.2 x R = A φ ψ
ectocld.3 χ x B φ
Assertion ectocld χ A S ψ

Proof

Step Hyp Ref Expression
1 ectocl.1 S = B / R
2 ectocl.2 x R = A φ ψ
3 ectocld.3 χ x B φ
4 2 eqcoms A = x R φ ψ
5 3 4 syl5ibcom χ x B A = x R ψ
6 5 rexlimdva χ x B A = x R ψ
7 elqsi A B / R x B A = x R
8 7 1 eleq2s A S x B A = x R
9 6 8 impel χ A S ψ