Metamath Proof Explorer


Theorem edgfiedgval

Description: The set of indexed edges of a graph represented as an extensible structure with the indexed edges in the slot for edge functions. (Contributed by AV, 14-Oct-2020) (Revised by AV, 12-Nov-2021)

Ref Expression
Hypotheses basvtxval.s φ G Struct X
basvtxval.d φ 2 dom G
edgfiedgval.e φ E Y
edgfiedgval.f φ ef ndx E G
Assertion edgfiedgval φ iEdg G = E

Proof

Step Hyp Ref Expression
1 basvtxval.s φ G Struct X
2 basvtxval.d φ 2 dom G
3 edgfiedgval.e φ E Y
4 edgfiedgval.f φ ef ndx E G
5 structn0fun G Struct X Fun G
6 1 5 syl φ Fun G
7 funiedgdmge2val Fun G 2 dom G iEdg G = ef G
8 6 2 7 syl2anc φ iEdg G = ef G
9 edgfid ef = Slot ef ndx
10 structex G Struct X G V
11 1 10 syl φ G V
12 structfung G Struct X Fun G -1 -1
13 1 12 syl φ Fun G -1 -1
14 9 11 13 4 3 strfv2d φ E = ef G
15 8 14 eqtr4d φ iEdg G = E