Metamath Proof Explorer


Theorem edgiedgb

Description: A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020) (Revised by AV, 8-Dec-2021)

Ref Expression
Hypothesis edgiedgb.i I = iEdg G
Assertion edgiedgb Fun I E Edg G x dom I E = I x

Proof

Step Hyp Ref Expression
1 edgiedgb.i I = iEdg G
2 edgval Edg G = ran iEdg G
3 1 eqcomi iEdg G = I
4 3 rneqi ran iEdg G = ran I
5 2 4 eqtri Edg G = ran I
6 5 eleq2i E Edg G E ran I
7 elrnrexdmb Fun I E ran I x dom I E = I x
8 6 7 syl5bb Fun I E Edg G x dom I E = I x