Metamath Proof Explorer


Theorem edglnl

Description: The edges incident with a vertex N are the edges joining N with other vertices and the loops on N in a pseudograph. (Contributed by AV, 18-Dec-2021)

Ref Expression
Hypotheses edglnl.v V = Vtx G
edglnl.e E = iEdg G
Assertion edglnl G UPGraph N V v V N i dom E | N E i v E i i dom E | E i = N = i dom E | N E i

Proof

Step Hyp Ref Expression
1 edglnl.v V = Vtx G
2 edglnl.e E = iEdg G
3 iunrab v V N i dom E | N E i v E i = i dom E | v V N N E i v E i
4 3 a1i G UPGraph N V v V N i dom E | N E i v E i = i dom E | v V N N E i v E i
5 4 uneq1d G UPGraph N V v V N i dom E | N E i v E i i dom E | E i = N = i dom E | v V N N E i v E i i dom E | E i = N
6 unrab i dom E | v V N N E i v E i i dom E | E i = N = i dom E | v V N N E i v E i E i = N
7 simpl N E i v E i N E i
8 7 rexlimivw v V N N E i v E i N E i
9 8 a1i G UPGraph N V i dom E v V N N E i v E i N E i
10 snidg N V N N
11 10 ad2antlr G UPGraph N V i dom E N N
12 eleq2 E i = N N E i N N
13 11 12 syl5ibrcom G UPGraph N V i dom E E i = N N E i
14 9 13 jaod G UPGraph N V i dom E v V N N E i v E i E i = N N E i
15 upgruhgr G UPGraph G UHGraph
16 2 uhgrfun G UHGraph Fun E
17 15 16 syl G UPGraph Fun E
18 17 adantr G UPGraph N V Fun E
19 2 iedgedg Fun E i dom E E i Edg G
20 18 19 sylan G UPGraph N V i dom E E i Edg G
21 eqid Edg G = Edg G
22 1 21 upgredg G UPGraph E i Edg G n V m V E i = n m
23 22 ex G UPGraph E i Edg G n V m V E i = n m
24 23 ad2antrr G UPGraph N V i dom E E i Edg G n V m V E i = n m
25 dfsn2 n = n n
26 25 eqcomi n n = n
27 elsni N n N = n
28 sneq N = n N = n
29 28 eqcomd N = n n = N
30 27 29 syl N n n = N
31 26 30 syl5eq N n n n = N
32 31 26 eleq2s N n n n n = N
33 preq2 m = n n m = n n
34 33 eleq2d m = n N n m N n n
35 33 eqeq1d m = n n m = N n n = N
36 34 35 imbi12d m = n N n m n m = N N n n n n = N
37 32 36 mpbiri m = n N n m n m = N
38 37 imp m = n N n m n m = N
39 38 olcd m = n N n m v V N N n m v n m n m = N
40 39 expcom N n m m = n v V N N n m v n m n m = N
41 40 3ad2ant3 N V n V m V N n m m = n v V N N n m v n m n m = N
42 41 com12 m = n N V n V m V N n m v V N N n m v n m n m = N
43 simpr3 m n N V n V m V N n m N n m
44 simpl m n N V n V m V N n m m n
45 44 necomd m n N V n V m V N n m n m
46 simpr2 m n N V n V m V N n m n V m V
47 prproe N n m n m n V m V v V N v n m
48 43 45 46 47 syl3anc m n N V n V m V N n m v V N v n m
49 r19.42v v V N N n m v n m N n m v V N v n m
50 43 48 49 sylanbrc m n N V n V m V N n m v V N N n m v n m
51 50 orcd m n N V n V m V N n m v V N N n m v n m n m = N
52 51 ex m n N V n V m V N n m v V N N n m v n m n m = N
53 42 52 pm2.61ine N V n V m V N n m v V N N n m v n m n m = N
54 53 3exp N V n V m V N n m v V N N n m v n m n m = N
55 54 ad2antlr G UPGraph N V i dom E n V m V N n m v V N N n m v n m n m = N
56 55 imp G UPGraph N V i dom E n V m V N n m v V N N n m v n m n m = N
57 eleq2 E i = n m N E i N n m
58 eleq2 E i = n m v E i v n m
59 57 58 anbi12d E i = n m N E i v E i N n m v n m
60 59 rexbidv E i = n m v V N N E i v E i v V N N n m v n m
61 eqeq1 E i = n m E i = N n m = N
62 60 61 orbi12d E i = n m v V N N E i v E i E i = N v V N N n m v n m n m = N
63 57 62 imbi12d E i = n m N E i v V N N E i v E i E i = N N n m v V N N n m v n m n m = N
64 56 63 syl5ibrcom G UPGraph N V i dom E n V m V E i = n m N E i v V N N E i v E i E i = N
65 64 rexlimdvva G UPGraph N V i dom E n V m V E i = n m N E i v V N N E i v E i E i = N
66 24 65 syld G UPGraph N V i dom E E i Edg G N E i v V N N E i v E i E i = N
67 20 66 mpd G UPGraph N V i dom E N E i v V N N E i v E i E i = N
68 14 67 impbid G UPGraph N V i dom E v V N N E i v E i E i = N N E i
69 68 rabbidva G UPGraph N V i dom E | v V N N E i v E i E i = N = i dom E | N E i
70 6 69 syl5eq G UPGraph N V i dom E | v V N N E i v E i i dom E | E i = N = i dom E | N E i
71 5 70 eqtrd G UPGraph N V v V N i dom E | N E i v E i i dom E | E i = N = i dom E | N E i