Metamath Proof Explorer


Theorem edgssv2

Description: An edge of a simple graph is an unordered pair of vertices, i.e. a subset of the set of vertices of size 2. (Contributed by AV, 10-Jan-2020) (Revised by AV, 23-Oct-2020)

Ref Expression
Hypotheses edgssv2.v V = Vtx G
edgssv2.e E = Edg G
Assertion edgssv2 G USGraph C E C V C = 2

Proof

Step Hyp Ref Expression
1 edgssv2.v V = Vtx G
2 edgssv2.e E = Edg G
3 2 eleq2i C E C Edg G
4 edgusgr G USGraph C Edg G C 𝒫 Vtx G C = 2
5 3 4 sylan2b G USGraph C E C 𝒫 Vtx G C = 2
6 elpwi C 𝒫 Vtx G C Vtx G
7 6 anim1i C 𝒫 Vtx G C = 2 C Vtx G C = 2
8 5 7 syl G USGraph C E C Vtx G C = 2
9 1 a1i G USGraph C E V = Vtx G
10 9 sseq2d G USGraph C E C V C Vtx G
11 10 anbi1d G USGraph C E C V C = 2 C Vtx G C = 2
12 8 11 mpbird G USGraph C E C V C = 2