Metamath Proof Explorer


Theorem edgumgr

Description: Properties of an edge of a multigraph. (Contributed by AV, 25-Nov-2020)

Ref Expression
Assertion edgumgr G UMGraph E Edg G E 𝒫 Vtx G E = 2

Proof

Step Hyp Ref Expression
1 umgredgss G UMGraph Edg G x 𝒫 Vtx G | x = 2
2 1 sselda G UMGraph E Edg G E x 𝒫 Vtx G | x = 2
3 fveqeq2 x = E x = 2 E = 2
4 3 elrab E x 𝒫 Vtx G | x = 2 E 𝒫 Vtx G E = 2
5 2 4 sylib G UMGraph E Edg G E 𝒫 Vtx G E = 2