Metamath Proof Explorer


Theorem edgupgr

Description: Properties of an edge of a pseudograph. (Contributed by AV, 8-Nov-2020)

Ref Expression
Assertion edgupgr G UPGraph E Edg G E 𝒫 Vtx G E E 2

Proof

Step Hyp Ref Expression
1 edgval Edg G = ran iEdg G
2 1 a1i G UPGraph Edg G = ran iEdg G
3 2 eleq2d G UPGraph E Edg G E ran iEdg G
4 eqid Vtx G = Vtx G
5 eqid iEdg G = iEdg G
6 4 5 upgrf G UPGraph iEdg G : dom iEdg G x 𝒫 Vtx G | x 2
7 6 frnd G UPGraph ran iEdg G x 𝒫 Vtx G | x 2
8 7 sseld G UPGraph E ran iEdg G E x 𝒫 Vtx G | x 2
9 fveq2 x = E x = E
10 9 breq1d x = E x 2 E 2
11 10 elrab E x 𝒫 Vtx G | x 2 E 𝒫 Vtx G E 2
12 eldifsn E 𝒫 Vtx G E 𝒫 Vtx G E
13 12 biimpi E 𝒫 Vtx G E 𝒫 Vtx G E
14 13 anim1i E 𝒫 Vtx G E 2 E 𝒫 Vtx G E E 2
15 df-3an E 𝒫 Vtx G E E 2 E 𝒫 Vtx G E E 2
16 14 15 sylibr E 𝒫 Vtx G E 2 E 𝒫 Vtx G E E 2
17 16 a1i G UPGraph E 𝒫 Vtx G E 2 E 𝒫 Vtx G E E 2
18 11 17 syl5bi G UPGraph E x 𝒫 Vtx G | x 2 E 𝒫 Vtx G E E 2
19 8 18 syld G UPGraph E ran iEdg G E 𝒫 Vtx G E E 2
20 3 19 sylbid G UPGraph E Edg G E 𝒫 Vtx G E E 2
21 20 imp G UPGraph E Edg G E 𝒫 Vtx G E E 2