Metamath Proof Explorer


Theorem edgusgrclnbfin

Description: The size of the closed neighborhood of a vertex in a simple graph is finite iff the number of edges having this vertex as endpoint is finite. (Contributed by AV, 10-May-2025)

Ref Expression
Hypotheses clnbusgrf1o.v V = Vtx G
clnbusgrf1o.e E = Edg G
Assertion edgusgrclnbfin Could not format assertion : No typesetting found for |- ( ( G e. USGraph /\ U e. V ) -> ( ( G ClNeighbVtx U ) e. Fin <-> { e e. E | U e. e } e. Fin ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 clnbusgrf1o.v V = Vtx G
2 clnbusgrf1o.e E = Edg G
3 1 dfclnbgr4 Could not format ( U e. V -> ( G ClNeighbVtx U ) = ( { U } u. ( G NeighbVtx U ) ) ) : No typesetting found for |- ( U e. V -> ( G ClNeighbVtx U ) = ( { U } u. ( G NeighbVtx U ) ) ) with typecode |-
4 3 eleq1d Could not format ( U e. V -> ( ( G ClNeighbVtx U ) e. Fin <-> ( { U } u. ( G NeighbVtx U ) ) e. Fin ) ) : No typesetting found for |- ( U e. V -> ( ( G ClNeighbVtx U ) e. Fin <-> ( { U } u. ( G NeighbVtx U ) ) e. Fin ) ) with typecode |-
5 4 adantl Could not format ( ( G e. USGraph /\ U e. V ) -> ( ( G ClNeighbVtx U ) e. Fin <-> ( { U } u. ( G NeighbVtx U ) ) e. Fin ) ) : No typesetting found for |- ( ( G e. USGraph /\ U e. V ) -> ( ( G ClNeighbVtx U ) e. Fin <-> ( { U } u. ( G NeighbVtx U ) ) e. Fin ) ) with typecode |-
6 1 2 edgusgrnbfin G USGraph U V G NeighbVtx U Fin e E | U e Fin
7 6 anbi2d G USGraph U V U Fin G NeighbVtx U Fin U Fin e E | U e Fin
8 unfib U G NeighbVtx U Fin U Fin G NeighbVtx U Fin
9 snfi U Fin
10 9 biantrur e E | U e Fin U Fin e E | U e Fin
11 7 8 10 3bitr4g G USGraph U V U G NeighbVtx U Fin e E | U e Fin
12 5 11 bitrd Could not format ( ( G e. USGraph /\ U e. V ) -> ( ( G ClNeighbVtx U ) e. Fin <-> { e e. E | U e. e } e. Fin ) ) : No typesetting found for |- ( ( G e. USGraph /\ U e. V ) -> ( ( G ClNeighbVtx U ) e. Fin <-> { e e. E | U e. e } e. Fin ) ) with typecode |-