Metamath Proof Explorer


Theorem ee001

Description: e001 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee001.1 φ
ee001.2 ψ
ee001.3 χ θ
ee001.4 φ ψ θ τ
Assertion ee001 χ τ

Proof

Step Hyp Ref Expression
1 ee001.1 φ
2 ee001.2 ψ
3 ee001.3 χ θ
4 ee001.4 φ ψ θ τ
5 1 a1i χ φ
6 2 a1i χ ψ
7 5 6 3 4 syl3c χ τ