Metamath Proof Explorer


Theorem ee010

Description: e010 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee010.1 φ
ee010.2 ψ χ
ee010.3 θ
ee010.4 φ χ θ τ
Assertion ee010 ψ τ

Proof

Step Hyp Ref Expression
1 ee010.1 φ
2 ee010.2 ψ χ
3 ee010.3 θ
4 ee010.4 φ χ θ τ
5 1 a1i ψ φ
6 3 a1i ψ θ
7 5 2 6 4 syl3c ψ τ