Metamath Proof Explorer


Theorem ee011

Description: e011 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee011.1 φ
ee011.2 ψ χ
ee011.3 ψ θ
ee011.4 φ χ θ τ
Assertion ee011 ψ τ

Proof

Step Hyp Ref Expression
1 ee011.1 φ
2 ee011.2 ψ χ
3 ee011.3 ψ θ
4 ee011.4 φ χ θ τ
5 1 a1i ψ φ
6 5 2 3 4 syl3c ψ τ