Metamath Proof Explorer


Theorem ee012

Description: e012 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee012.1 φ
ee012.2 ψ χ
ee012.3 ψ θ τ
ee012.4 φ χ τ η
Assertion ee012 ψ θ η

Proof

Step Hyp Ref Expression
1 ee012.1 φ
2 ee012.2 ψ χ
3 ee012.3 ψ θ τ
4 ee012.4 φ χ τ η
5 1 a1i θ φ
6 5 a1i ψ θ φ
7 2 a1d ψ θ χ
8 6 7 3 4 ee222 ψ θ η