Metamath Proof Explorer


Theorem ee02an

Description: e02an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee02an.1 φ
ee02an.2 ψ χ θ
ee02an.3 φ θ τ
Assertion ee02an ψ χ τ

Proof

Step Hyp Ref Expression
1 ee02an.1 φ
2 ee02an.2 ψ χ θ
3 ee02an.3 φ θ τ
4 3 ex φ θ τ
5 1 2 4 mpsylsyld ψ χ τ