Metamath Proof Explorer


Theorem ee03an

Description: Conjunction form of ee03 . (Contributed by Alan Sare, 18-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee03an.1 φ
ee03an.2 ψ χ θ τ
ee03an.3 φ τ η
Assertion ee03an ψ χ θ η

Proof

Step Hyp Ref Expression
1 ee03an.1 φ
2 ee03an.2 ψ χ θ τ
3 ee03an.3 φ τ η
4 3 ex φ τ η
5 1 2 4 ee03 ψ χ θ η