Metamath Proof Explorer


Theorem ee100

Description: e100 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee100.1 φ ψ
ee100.2 χ
ee100.3 θ
ee100.4 ψ χ θ τ
Assertion ee100 φ τ

Proof

Step Hyp Ref Expression
1 ee100.1 φ ψ
2 ee100.2 χ
3 ee100.3 θ
4 ee100.4 ψ χ θ τ
5 2 a1i φ χ
6 3 a1i φ θ
7 1 5 6 4 syl3c φ τ