Metamath Proof Explorer


Theorem ee10an

Description: e10an without virtual deductions. sylancl is also e10an without virtual deductions, except the order of the hypotheses is different. (Contributed by Alan Sare, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee10an.1 φ ψ
ee10an.2 χ
ee10an.3 ψ χ θ
Assertion ee10an φ θ

Proof

Step Hyp Ref Expression
1 ee10an.1 φ ψ
2 ee10an.2 χ
3 ee10an.3 ψ χ θ
4 1 2 3 sylancl φ θ