Metamath Proof Explorer


Theorem ee110

Description: e110 without virtual deductions. (Contributed by Alan Sare, 22-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee110.1 φ ψ
ee110.2 φ χ
ee110.3 θ
ee110.4 ψ χ θ τ
Assertion ee110 φ τ

Proof

Step Hyp Ref Expression
1 ee110.1 φ ψ
2 ee110.2 φ χ
3 ee110.3 θ
4 ee110.4 ψ χ θ τ
5 3 a1i φ θ
6 1 2 5 4 syl3c φ τ