Metamath Proof Explorer


Theorem ee11an

Description: e11an without virtual deductions. syl22anc is also e11an without virtual deductions, exept with a different order of hypotheses. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee11an.1 φ ψ
ee11an.2 φ χ
ee11an.3 ψ χ θ
Assertion ee11an φ θ

Proof

Step Hyp Ref Expression
1 ee11an.1 φ ψ
2 ee11an.2 φ χ
3 ee11an.3 ψ χ θ
4 3 ex ψ χ θ
5 1 2 4 sylc φ θ